Total No. of Pages: 3

Seat	- 1
No.	

S.Y. B.Tech. (Computer Science and Engg.) (Semester - III) (CBCS) Examination, November - 2019 APPLIED MATHEMATICS

Sub. Code: 73276

Day and Date: Saturday, 23 - 11 - 2019

Total Marks: 70

Time: 10.00 a.m. to 12.30 p.m.

Instructions:

- 1) Attempt any three full questions from each section.
- 2) Figures to the right indicate full marks.
- 3) Use of non-programmable calculator are allowed.
- 4) Assume suitable data if necessary.

SECTION - I

Q1) a) Find the two lines of regressions from the following data [6] 57. 42 38 42 45 42 40 46 44 43 40 10 26 41 29 27 27 19 18 19 31

b) Fit straight line to the following data

[6]

x : 10 20 30 40 50 60 70 80

y: 1 3 5 10 6 4 2 1

- Q2) a) Out of 1000 families with 4 children each how many would you expect to have
 - i) 2 boys and 2 girls
 - ii) At least one boy
 - iii) No girls

Assume boys and girls are equally likely.

[6]

- b) A firm has two cars which it hires out day by day. The number of demand for a car on each day is distributed as a poissons variate with mean 1.5. Calculate the probable no.of days in a year on which [5]
 - i) Neither car is in demand
 - ii) A demand is refused.

Q3) a) Evaluate
$$\int_0^8 \frac{dx}{1+x^2}$$
 by using Trapezoidal rule, taking 6 steps. [5]

b) Use Simpson's
$$\frac{1}{3^{nd}}$$
 rule to find $\int_0^{0.6} e^{-x^2} dx$ taking the 6 steps. [6]

Q4) Attempt any two.

- b) In a test of 2000 electric bulbs, it was found that the life time of the bulbs was normally distributed with the mean of 2040 hours and standard deviation of 60 hours. Estimate the number of bulbs likely to burn out
 - i) more than 2140 hours
 - ii) less than 1950 hours (Given: for S.N.V.z area from z=0 to z=1.83 is 0.4664, that between z=0 and z=1.5 is 0.4332)
- Compute the value of $\int_{0.2}^{1.4} (\sin x \log x + e^x) dx$ using Simpson's $\frac{3}{8^{th}}$ rule taking 6 steps.

SECTION - II

- Q5) a) Define scalar cardinality and fuzzy cardinality. Give one example of each.
 - b) Find α -cuts and strong α -cuts for the value of α =0.25 and α =0.5 for the fuzzy set $\overline{A \cup B}$ where

$$A = \left\{ \frac{0.25}{1} + \frac{0.35}{2} + \frac{0.13}{3} + \frac{0.27}{4} + \frac{1}{5} \right\}, B = \left\{ \frac{x+1}{x+3} \right\} X \in \{1, 2, 3, 4, 5\}$$

Q6) a) Define fuzzy number and determine whether the following fuzzy set is a fuzzy number $A(x) = \begin{cases} \sin x & 0 \le x \le \pi \\ 0 & \text{otherwise} \end{cases}$ [5]

[6]

[6]

[6]

b) Solve
$$A + X = B$$
 for the following fuzzy sets

$$A = \begin{cases} x - 3 & 3 \le x \le 4 \\ 5 - x & 4 \le x \le 5 \\ 0 & \text{otherwise} \end{cases} B = \begin{cases} \frac{x - 12}{8} & 12 \le x \le 20 \\ \frac{32 - x}{12} & 20 \le x \le 32 \\ 0 & \text{otherwise} \end{cases}$$

Q7) Solve the assignment problem for minimization

			Machin	ies		
		1	11	111	IV	V
	Α	8	20	19	31	25
	В	26	37	39	41	15
Operators	С	9	11	24	5	7
	D	29	31	41	45	50
	E	71	19	21	31	45

Q8) Attempt any two questions from the following.

a) Find fuzzy cardinality of
$$\overline{A \cap B}$$
 where

$$A = \left\{ \frac{0.23}{1} + \frac{0.29}{2} + \frac{0.71}{3} + \frac{0.15}{4} + \frac{1}{5} \right\}, \quad B = \left\{ \frac{x+1}{x+5} \right\} \quad X \in \left\{ 1, 2, 3, 4, 5 \right\}$$

$$A = \begin{cases} \frac{x-1}{2} & 1 \le x \le 3 \\ \frac{5-x}{2} & 3 \le x \le 5 \\ 0 & \text{otherwise} \end{cases} \qquad B = \begin{cases} \frac{x-3}{2} & 3 \le x \le 5 \\ \frac{7-x}{2} & 5 \le x \le 7 \\ 0 & \text{otherwise} \end{cases}$$

c) Solve the assignment problem for maximization

-		- 11	111	IV
A	2	3	4	5
В	11	12	9	7
C 🖔	21	35	15	7
D	9	15	13	14

Total No. of Pages: 3

Seat	
No.	₹

S.E. (Computer Science & Engineering) (Part - II) (Semester - III)

Examination, November - 2019 APPLIED MATHEMATICS

Sub. Code: 63524

Day and Date : Saturday, 23 - 11 - 2019

Total Marks: 50

Time: 9.30 a.m. to 11.30 a.m.

Instructions:

- Attempt any two questions from each section. 1)
- Figures to right indicate full marks. 2)
- Use of non programmable calculator is allowed. 3)

SECTION - I

Q1) Attempt any two of the following (each six marks).

[12]

Find equation of line of regression of x on y to the following data. a)

X	11	26	39	47	58
У	47	49	56	67	78

Find the value of the integral in five steps by using Trapezoidal rule.

$$\int_2^3 x^2 e^x dx..$$

- Determine the root of the following equation correct up to four decimal places using Secant Method $2x^2-4x-1=0$
- Q2) Attempt any two of the following (each six marks).

[12]

Verify whether following function is continuous probability density function.

$$f(x) = \frac{3}{4} \times (2 - x) \qquad 0 \le x \le 2$$
$$= 0 \qquad \text{otherwise}$$

- The height of 300 students are normally distributed with mean 64.5" and b) standard deviation 3.3". How many students have height less than 60". (Standard Normal Variate from z=0 to 1.36 is 0.4131)
- It is 1 in 500 that an articles is defective. There are in a box 1000 articles c) of this type. Assuming Poisson distribution, if there are 5000 boxes of such type then find how many boxes contains not more than I defective articles.

[7]

Q3) a) Fit a Binomial distribution to the following data.

x	0	1	2	3	4	5
f_{i}	5,	7	16	15	6	1

b) Fit a second degree curve to the following data.

x	0	1	2	3	4	5
y	12	33	45	55	63	72

[6]

SECTION - II

If the fuzzy sets A and B are defined by Q4) a)

$$A(x) = \frac{0.8}{5} + \frac{0.5}{4} + \frac{0.7}{3} + \frac{0.3}{2} + \frac{0.1}{1}$$

$$B(x) = \frac{1}{1} + \frac{0.8}{2} + \frac{0.7}{3} + \frac{0.6}{4} + \frac{0.5}{5}$$

$$B(x) = \frac{1}{1} + \frac{0.8}{2} + \frac{0.7}{3} + \frac{0.6}{4} + \frac{0.5}{5}$$

Find $A \cup B$, $A \cap B$ and $\overline{A} \cap B$.

[6]

If the fuzzy sets A and B are defined by b)

$$A(x) = \frac{0.3}{x1} + \frac{0.9}{x2} + \frac{0.7}{x3} + \frac{0.6}{x4} + \frac{0.1}{x5}$$

$$B(x) = \frac{0.2}{x1} + \frac{0.4}{x2} + \frac{0.5}{x3} + \frac{0.7}{x4} + \frac{0.9}{x5}$$

Calculate the degree of subset hood S(A,B) and S(B,A).

Q5) Attempt any two of the following.

[12]

[12]

a) Define α - cuts and strong α - cuts and find α - cuts and strong α -cuts for $\alpha = 0.5, 0.7$ for the Fuzzy set defined by

$$A(x) = \frac{0.5}{x1} + \frac{0.4}{x2} + \frac{0.7}{x3} + \frac{0.8}{x4} + \frac{1}{x5}$$

b) Using extension principle find f(A,B) where $f(x_1, x_2) = 2x_1 + x_2$ and A and B are given as

$$A(x) = \frac{0.5}{1} + \frac{0.6}{2} + \frac{0.9}{3} + \frac{1}{4} + \frac{0.2}{5}$$

$$B(x) = \frac{0.3}{3} + \frac{0.4}{4} + \frac{0.7}{5} + \frac{1}{6} + \frac{0.3}{7}$$

c) Calculate the fuzzy number A.B for the fuzzy number A and B, given below

$$A(x) = \begin{cases} \frac{x-1}{2}, 1 < x \le 3 \\ \frac{5-x}{2}, 3 < x \le 5, \text{ and } B(x) = \begin{cases} \frac{x-3}{2}, 3 < x \le 5 \\ \frac{7-x}{2}, 5 < x \le 7 \\ 0, \text{ otherwise} \end{cases}$$

Q6) Solve the assignment problem.

				Task	CS	-
		P	Q	R	S	T
1 2 20 20 20	Α	11	17	8	16	20
	В	9	7	12	6	15
Persons	C	13	16	15	12	16
	D	21	24	17	28	26
	Е	14	10	12	11	13

G)/~/60

Seat	
No.	ž.

S.Y.B.Tech. (Computer Science and Engineering)

		(Se	mest	er - III) Exami	nation,	November -	2019
			Sec.	DATA ST	RUCTU	JRES	rivers.
	. 4	e Versei Eller		Sub. Co	de: 732	78	
-				rsday, 28 - 11 - 2019 12.30 p.m.		Te	otal Marks : 70
Instructions: 1) 2) 3)		2)	Q. 1 is compulsory. Attempt any four questions from Figures to the right indicate full r				
Q1)				0 out the following. (answer sheet).	Write cor	nplete statement o	f question and
	a)			f the following data s nent Linear Queue?	structures	or its combination	ns can be used
		i)	Arra	y 🤃	ii)	Linked List	. (5)
		iii)	Stac	k	iv)	All the Above	
etgn	b)	Ab 1 is	inary called	tree whose left subtre d as:	e and righ	nt subtree differ in	height by only
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i)	Con	nplete Binary Tree	ii)	General tree	
		iii)	AVI	tree	iv)	Almost complete	tree
	c)	Giv deg	en an rees o	undirected graph G v f all vertices is	vith V ver	tices and E edges,	the sum of the
		i)	E		ii)	2E	
		iii)	V		iv)	2V	
	d)	Wh	ich of	the following is true	about link	ed list implements	ation of stack?
		i)	In p	ush operation, if never dist, then in pop	v nodes a	re inserted at the	beginning of
		ii)	In pu	ash operation, if new ation, nodes must be	nodes are	inserted at the en	d, then in pop
		iii)	Both	of the above			
		iv)	Non	e of the above		4 m	
	Ent						P.T.O.

e)) A:	full binary tree with n leaves c	ontain	S
	i)	n nodes	ii)	log ₂ n nodes.
	iii)	2n – 1 nodes	iv)	2 ⁿ nodes
f)		nich of the following sorting ning time of O(n²)?	algori	thms does not have a worst case
	i)	Insertion sort	ii)	Merge sort
	iii)	Quick sort	iv)	Bubble sort
g)	The	data structure required for B	readth	First Traversal on a graph is
	i)	queue	ii)	stack
	iii)	array	iv)	tree
h)	Wha impl	at data structure would you ementation of a recursive algo	mostl orithm	y likely see in a non-recursive?
	i)	Stack	ii)	Linked list
	iii)	Queue	iv)	Trees
i)	An a of:	djacency matrix representation	nofag	graph cannot contain information
gara Egypt 10))	nodes	ii)	edges
		direction of edges	iv)	parallel edges
j)	Whic	h of the following data struct	ures i	s indexed structure?
		Array	ii)	Structure
	C-\$10	Stack	iv)	Queue
k)				mining whether a sequence of
	The n	naximum number of parentho TIME when the algorithm and	eses th	nat appear on the stack AT ANY
	ı) l		ii)	2
	iii) 3		iv)	4 or more
ga ". Sant's				

	SC - 823
Q2) a	Write a C program to implement Bubble sort algorithm. [7]
, b	
Q3) a)	Write a C program or Pseudo Code for implementation Linear Search algorithm.
b)	List and explain various types of Binary Tree with appropriate diagrams
Q4) a)	List and explain the graph traversal techniques. [8]
b)	Write a C Program or Pseudo Code for implementation of Stack using array.
Q5) a)	List the different types of Linked list. Explain each with appropriate diagrams.
b)	Write a C program or Pseudo code for following operations on a Doubly Linked List:
	i) Insert node at end of list
	ii) Delete node at start of list
0	iii) Display the nodes from last node to first node of the list
Q6) a)	Define Queue. List and explain the applications of Queue in details. [7]
b)	Write a C program or Pseudo code for following operations on a binary
	i) Insert a new node to the tree
	ii) Pre order traversal
	iii) Post order traversal

Total Marks: 50

Seat	AT IN THE	٦
No.		200

S.E. (Computer Science and Engineering) (Semester - III) Examination, November - 2019 DATA STRUCTURES

Sub. Code: 63526

Commence of the second	d Date : Thursday, 28 - 11 - 2019 Total Marl 9.30 a.m. to 11.30 a.m.	ks : 50
Instruct	ions: 1) All Questions are compulsory 2) Figures to the right indicate full marks. 3) Assume suitable data whenever necessary.	
Q1) a)	Define Following Terms:	[4]
	i) Array ii) Asymptotic time complex	
b)	그는 사용하다들이 한 프랑이라 바쁜 나이들이에 모양하다. 이 이렇게 되는 이 그렇게 되었다면 그는 그는 사람이 바이지를 가지 않는 사람이 되었다. 그는 사람이 가지를 가득하는 것은	[4]
c)	Explain Linear search technique.	[4]
Q2) a)	Explain Algorithm for following operations of doubly linked list i) Attach a node in the beginning of the linked list. ii) Detach the last node of linked list	[7]
b)	Explain push and pop operations of stack. OR Explain Quick Sort algorithm.	[6]
Q3) a)	Explain different traversal techniques used in binary tree	[6]
b)	Explain insert node operation in Binary Search Tree. OR Explain Depth First Traversal in Graph.	[7]
Q4) a)	Explain structure of B Tree.	
b)	Explain following terms: i) Depth of a tree. ii) Path matrix in a graph	[4] [4]
c)	What is heap? How heap is stored in an array?	[4]

Total No. of Pages: 4

Seat	
No.	. J.

S.Y. B.Tech. (CSE) (Part - II) (Semester - III) Examination, November - 2019 DISCRETE MATHEMATICAL STRUCTURE

	DISCF	ETE MATHE	MA'	TICAL STRUC	TURE
C.	10.2	Sub. C	Code	73277	
		esday, 26 - 11 - 2019 o 12.30 p.m.			Total Marks: 70
Instruction	ns: 1)	Question No. 1 is Mand it is compulsory	Aultip	le Choice Question (N	ICQ) type question
	2)	Solve any 4 question	ns from	n question 2 to questio	n 6.
	3)	Figures at right indi			-
	4)	Choose suitable dat	a whe	never necessary.	
Q1) Solve given	e followi n question	ng Multiple Choice	Ques	tions by selecting co	orrect option for a
a)	Given a	set X, and P(X) is it	ts pov	ver set. The relation	$\langle P(X), \subset \rangle$ is.[1]
/. [^]		iivalence Relation	ii)	Partial order relation	on
\$1.4.24 0.4.2	iii) Cor	npatibility relation	iv)	Reflexive relation	
	Given a edges wh called _	Graph G = < V, E > ich are associated v	, whe	ere V is set of vertice n unordered pair < u.	es and E is set of v>. The graph is
	i) Und	lirected Graph	ii)	Directed Graph	
	iii) Mix	ed Graph	iv)	None of These	
c)	$(P \wedge P) =$	P is,			[1]
	i) De l	Morgan's law	ii)	Absorption law	
	iii) (Ider	npotent law	iv)	Commutative law	
,m. 19.				The second second second	

d)	A set of formulas H1, H2 Hn is said to be consistent. [1	l
	i) If the conjuction has truth value T	
	ii) If the conjuction has truth value F	
	iii) If the disjunction has truth value T	
	iv) If the disjunction has truth value F	
e)	Let $N = \{1, 2, 3, \underline{\hspace{1cm}}\}$ be ordered by divisibility, which of the following subset is totally ordered,	•
\ - :	i) (2, 6, 24) ii) (3, 5, 15)	
	iii) (2, 9, 16) iv) (4, 15, 30)	
f)	If B is a Boolean Algebra, then which of the following is true.	l
	i) B is finite but not complemented lattice	
	ii) B is finite, complemented and distributive lattice	
	iii) B is a finite, distributive but not complemented lattice	
Ę,	iv) B is not distributive lattice	
g)	$[\neg q \land (p \rightarrow q)] \rightarrow \neg p \text{ is,}$	l
	i) Satisfiable ii) Unsatisfiable	
	iii) Tautology iv) Invalid	
h)	Which of the following relations is symmetric.	•
	i) $\{(1, 1), (1, 2), (1, 3)\}$	i
	ii) $\{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$	
	iii) $\{(1,2),(2,1),(2,2),(3,3)\}$	
	iii) $\{(1,2),(2,1),(2,2),(3,3)\}$ iv) $\{(1,2),(1,3),(2,3)\}$	
613.		

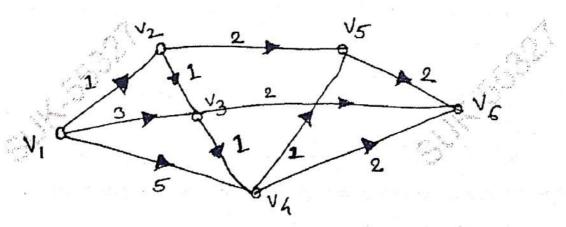
Initial node Initial node
i) Indegree of node ii) Outdegree of node
iii) Total degree of node iv) None of these
Define tautology and contradiction. For the given statement formulas check whether they are tautology or Contradiction or none [6]
i) $((\sim p \rightarrow Q) \rightarrow (Q \rightarrow P))$
ii) $((P \vee Q) \rightarrow P)$
Obtain PDNF and PCNF of $P \land (P \rightarrow Q)$ [4]
What is a function? Define different types of functions with example.[5]
Given $R = \{<1,2>, <3,4>, <2,2>\}, S = \{<4,2>, <2,5>, <3,1>, <1,3>\}$ find.
i) R^2 ii) R^2 oS iii) S^3
Define subgroups & is Types. Find all proper subgroups of $\langle Z_{5,+5} \rangle$ [7]
Using the statements [2]
P: Mark is Rich
Q: Mark is Happy
Find: i) $\neg P \rightarrow Q$ ii) $\neg P \lor Q$
Define Monoid Homomorphism? Give an example [5]
Write short note on Minimization of Boolean Functions. [6]
Consider a Set $S = \{a, b, c\}$. Draw Hasse Diagram of the POSET $\langle P(S), \underline{C} \rangle$ [4]

Q5) a) Check whether following conclusion is valid or not:

- i) $P \rightarrow Q$, $Q \rightarrow R$), and $P \Rightarrow R$
- b) Explain Clock Algebra. Give an example.

[4]

c) Show that following Lattice is Complemented & Distributive.

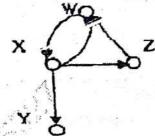

[3]

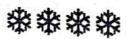
- $a \stackrel{b^1}{\underset{o}{\longleftrightarrow}} b$
- d) Define Cyclic group with example.

[4]

Q6) a) Find the critical path of the following Graph.

[4]


b) Define the following terms with an example


[6]

i) Path

- ii) Digraph
- iii) Null Graph
- c) Draw Storage representation of following Diagraph.

[5]

Total No. of Pages: 2

Seat No.

S.Y.B. Tech. (Computer Sci.) (Semester - III)

Examination, November - 2019

COMPUTER NETWORKS-I

Sub. Code: 73279

Day and Date: Saturday, 30 - 11 - 2019

Total Marks: 70

Time: 10.00 a.m. to 12.30 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) a) Draw & explain TCP/IP protocol model in detail. [7]

OR

Differentiate between Manchester & differential Manchester encoding. Draw the signal for 01101011. [7]

List & explain framing methods in DLL. b)

[6]

What is CSMA? differentiate between pure & slotted ALOHA.

[6]

OR

A (7,4) Hamming codeword is received by the receiver as 1011011 by assuming even parity check, whether the error is there & if error then, what should be the right codeword. [6]

b) Explain collision free protocols in detail.

[6]

Q3) Write short notes on (any two)

[10]

- Sliding window protocol selective Repeat. a)
- IEEE 802.3 frame format b)
- Dynamic channel Allocation. c)

Q4) a)	Explain Link state routing Algorithm with example.	[7]
	OR OR	-6 ¹
	What is subnetting? If class B network is divided into 4 subnetting.	networks,
	then what will be the subnet ID & subnet mask.	[7]
b)_	Define congestion? How to control congestion.	[6]
Q5) a)	Explain TCP segment format.	[6]
	OR	
	Explain in detail Transport service primitives.	[6]
b)	Explain ICMP error control formats.	[6]
Q6) Wr	ite short notes on (Any Two)	[10]
a)	Flow control in TCP	
b)	Jitter control	5
c)	ARP & RARP	
	The state of the s	
C	30.	
· ·		

SUX-92261

SUK-92261

Total	No.	of	Pa	ges	.2

Seat No.

S.E. (C.S.E.) (Part-I) (Semester-III) Examination, December - 2019 MICROPROCESSORS

Sub. Code: 63528

Day and Date: Tuesday, 3-12-2019

80386-P4 descriptor

c)

Time: 9.30 a.m.to 11.30 a.m.

Total Marks:50

Instructions:

Attempt any two Questions from Q. No. 1,2,3 and 5,6,7. 1)

Questions No. 4 and 8 are compulsory 2)

SECTION-I

Explain programming model of advanced Microprocessors in detail.[5] Q1) a) Write Concept of Real Mode memory addressing of microprocessors. b) [5] Explain all Data addressing Mode of advanced microprocessors. Q2) a) [5] Write a program for 2*8 by using only ADD instruction. [5] Draw and explain format of Access Right Byte in deep for interfacing Q3) a) [5] Explain JUMP, CALL, Compare and HLT instructions. b) [5] Q4) Write short Note on (any one) [5] Load Effective Address a) Flag register for entire 80 X86 and pentium microprocessor family. b)

> ANIA CONTRACTOR P.T.O.

SECTION-II

Q5)	a)	Write all comparison instructions of advanced microprocessor with proper syntax.	th 5]
	b)	Draw and Explain architecture of recent advances in 80386D; microprocessor	X 5]
Q6)	a)	Draw and explain the internal structure of the pentium -Pro microprocessor	or 5]
	b)	Explain Basic Interrupt Processing [5	5]
Q 7)	a)	Explain all BCD and ASCII instructions in details [5]
i.	b)	Explain Memory Paging Mechanism [3	5]
	a) b) 🌏	e short Note on (any one) Virtual 8086 Mode Hardware Interrupt Hyper Threading Technology	5]

B B B

Seat	
No.	€

S.Y. B. Tech. (Computer Science) (Part - II) (Semester - III) (CBCS) (Revised) Examination, December - 2019 MICROPROCESSORS

Sub. Code: 73280

	100	42			Sub	. Coue .	1320	90	12 to 25			
				day, 3 - 1: 12.30 p.r		9				Total M	larks :	70
Instr	uction	ns:	1)		3a is co	ompulsory	and so	lve any	one ques	tion fron	Q. 3b a	and
			2)	Q. 3c. Question Q. 6c.	6a is c	ompulsory	and so	lve any o	one ques	tion from	Q. 6b a	and
			3)		o the ri	ght indicat	e full n	narks.				
Q1)	Solv	e an	y two	question	ıs.							
	a)	Wri	te sho	ort note o	n class	sification o	of ins	truction	based	on leng	th	[6]
	b)	Wri	te a sl	nort note	on fol	lowing ari	thme	tic instr	uctions	related	100	5. [6]
		i)	ADI)	ii)	SBB		iii) I	NR		2	
	c)	Wri	te a sh	nort note	on Dat	ta Memory	(RA	M) of 8	051 Mi	croconti	oller.	[6]
Q2)	Solv	e an	y two	question								
	a)	Wri	te a sh	nort note	on any	three of the	ne foll	lowing	special	purpose	registe	ers.
												[6]
		i)	Instr	ruction Po	ointer	(IP)	ii)	Stack	Pointe	(SP)		
		iii)		y flag (C	•0.0		iv)		flag (P			
	b)	In C	ontex follow	t with da ing.	ta-add	lressing m	odes,	write a	short r	ote on a	ny two	of [6]
		i)	Base	e-Plus-In	dex ad	ldressing						- 1000 -
		ii)	Regi	ister Rela	tive A	ddressing					<i>y</i> · · · · ·	
		iii)	440	ister Add								
	c)	Exp men	lain I nory-a	ndirect P addressin	rogran g mod	n memory des.	addı	ressing	in cont	ext with		anı [6]

		SC	- 825
Q3) a)	Explain String Instructions in 8086?	[6]
	b)	Explain MOV instructions? Draw a diagram for MOV BX, CS insconverted to binary machine language. OR	truction [5]
	c)	With example write a short note on comparison instruction.	[5]
O 4)	Solv	ve any two question.	
	a)	Explain 8086 instruction: TEST, NEG and NOT with example purpose?	and its
	b)	List and explain types of Software Interrupts?	[6]
	c)	Write 8086 logical instructions to multiply the contents of AX	register
		by:	[6]
		i) 10 ii) 18	5 6
Q 5)	Solv	ve any two question.	
	a)	Draw and explain physical memory system of 80386 Microproce	essor?
4 -	b)	Eveloin Vital 1900CNC 1 : 00CT	[6]
	c)	Explain Virtual 8086 Mode in 386 Processor?	[6]
		Explain Paging Mechanism in 80386?	[6]
Q6)	N. 1	Draw and briefly explain Memory Bank in Pentium Pro system?	[6]
	b)	Explain Hyper Threading?	
		OR	[5]
1	c)	List and explain functions of 8086 Flags?	[5]

[5]

Seat No.

S.E. (Computer Science and Engineering) (Semester - IV) Examination, November - 2019

Automata Theory

Sub. Code: 63531

Day and Date: Wednesday 13-11-2019

Total Marks:50

Time: 2.30 p.m.to 4.30 p.m.

Instructions:

- 1) All questions are compulsory
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data whenever necessary.
- Q1) a) Define Following Terms:

[4]

- i) Extended Transition function for NFA.
- ii) Context Free Grammar.
- b) Write Regular expression for following languages (assume $\Sigma = \{0,1\}$)[4]
 - i) The language of all strings containing at least two 0's.
 - ii) The language of all strings having 011 or 101 as substring.
 - c) Draw Deterministic Finite Automata (DFA) for r = (1+0)*101(1+0)*[4]
- Q2) a) State and prove Kleen's theorem part-II.

[6]

OR

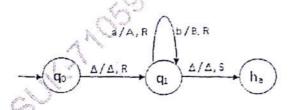
Write regular grammar for following languages:

- i) r = (01)*01
- ii) r = aa(a+b)*
- b) Convert Following Grammar into Chomsky Normal Form.

[4]

- i) $S \rightarrow ABC$
- ii) $A \rightarrow aA$ a
- iii) $B \rightarrow bbB \mid \Lambda$
- iv) $C \rightarrow bC \mid \Lambda$

- c) Write Context Free Grammar for following Language:
- [3]


$$L \!\!=\!\! \{a^ib^ic^k \mid K\!\!=\!\!i+j,\!i,\!j,\!k\!\!>\!0\}$$

- .Q3) a) Explain the pumping Lemma for Context Free Languages.
- [3]
- b) Write moves and Draw PDA for following language (Attempt any one)[6]
 - i) $L = \{x | n_a(x) = n_b(x), x \in \Sigma^*, \Sigma = \{a, b\} \}$
 - ii) $L = \{a^m b^n \mid m > n \text{ and } n > 0\}$
- c) Define following terms:

[4]

- i) Configuration of PDA.
- ii) Computing a function by Turing Machine.
- Q4) a) Write encoding of following Turing machine.

14

b) Attempt any two questions:

- [8]
- i) Design Turing Machine for acceptance of a language containing strings having odd number of 1's (assume $\Sigma = \{0,1\}$).
- ii) Design Turing Machine to evaluate function N%2 (assune N is a positive integer number).
- iii) Design Turing Machine for acceptance of a language r = (1+0)*11 (assume $\Sigma = \{0,1\}$).

Total No. of Pages : 1	Total	No.	of Pages	:	1
------------------------	-------	-----	----------	---	---

Seat No.

S.E. (C.S.E.) (Semester - IV) (Revised)

Examination, November - 2019

OPERATING SYSTEM - I

Sub. Code: 63534

1	Sub. Code: 63534	
	Date : Tuesday, 19 - 11 - 2019 2.30 p.m. to 4.30 p.m.	ks : 50
Instructi	ons: 1) Question no. 1 & 4 are compulsory.	
	2) Attempt any ONE from Q.2 and Q.3 and any ONE from Q.5 and	nd Q.6.
	Figures to the right indicate full marks.	4.
	4) Assume suitable data if required.	
Q1) a)	Explain the following in detail.	[7]
	i) Time sharing systems	
	ii) Real time Operating systems.	
b)	Explain monolithic operating system in detail.	[6]
Q2) a)	Draw and process state transition diagram in detail.	[6]
b)	Explain the issues related to message passing system.	[6]
6		
Q3) a)	Explain FCFS scheduling in detail.	[6]
b)	Write a note on multilevel queue scheduling in detail.	[6]
04) -)	W/L-+' C 1/2 F 1'	- 1- 4- 60
Q4) a)	What is a page fault? Explain steps in handling a page fault.	[7]
b) .	Explain recovery from deadlock in detail.	[6]
Q5) a)	State and different necessary conditions for deadlock.	161
b)	Explain concept of resource allocation graph in detail.	[6]
0)	Explain concept of resource anocation graph in detail.	[6]
Q6) a)	With the help of suitable diagram explain concept of swapping.	[6]
b)	List and explain different operations on file.	[6]
	C	ω, [U]
		7
	(b)	

Seat No. Total No. of Pages : 1

S.E. (C.S.E.) (Semester - IV) Examination, November - 2019 COMPUTER ORGANIZATION

			Sar (COMPU	JTER (ORGAN	IZATI	ON		
		Marie			Sub. Co	de: 635	33	\ \\ \ -=		
Day	and	Date : F	rida	ay, 15 - 11	- 2019			Tot	al Mark	s:50
		30 p.m.								
Inst	ructio	ons: 1))	Question (Q.1 & Ques	stion Q.4 ar	e compulso	ory.		
		2)		Attempt a Q.5, Q.6.	iny one qu	estion from	n Q.2, Q.3	and one	from Que	estior
		3))	Figures to	the right in	idicate full	marks.			
Q1)	a)	With a	nea	ıt diagram	n explain t	he structu	re of IBM	system/3	60.	[7]
,	b)			100	•	programs		11.5		[6]
						1 5				[*]
Q2)	a)	Explain	n th	e archited	cture of A	MD Proce	essor.		(m	[6]
	b)	Explain	n th	e IEEE 7:	54 standar	d 32 bit fl	oating poi	nt format	. 19 ⁵⁹	[6]
Q3)	a)	Explain	n th	e big-end	ian and lit	tle-endian	byte stora	ige forma	t.	[6]
	b)	Explain	n the	e Booths a	algorithm	with an ex	ample.			[6]
Q4)	a)	Explair	ı cla	assical me	thod of de	esigning co	ontrol unit	for GCD	processo	or.[7]
	b)	Explair	no no	n-restorir	ng division	n algorithr	n for unsig	gned integ	gers.	[6]
Q5)	a)	Explair	n the	e four bas	ic floating	g point arit	thmetic op	perations.		[6]
	b)	With a	neat	t diagram	explain n	nicro prog	ram contr	oller.		[6]
Q6)	a)	Write a	sho	ort note o	n differen	t memory	types.			[6]
	b)	Draw as	nd e	xplain th	e cache m	emory org	ganization		Con	[6]

Seat No. Total No. of Pages: 2

S.E. (Computer Science and Engineering) (Part - II) (Semester - IV) (Revised) Examination, November - 2019

COMPUTER NETWORKS

Sub. Code: 63532

Day and Date: Thursday, 14-11-2019 Total Marks: 50 Time: 2.30 p.m. to 4.30 p.m. **Instructions:** 1) Solve any Two questions from each Section. 2) Figures to the right indicate full marks. 3) Assume suitable data whenever necessary. **SECTION-I** With neat diagram explain optimality principle. Q1) a) Explain link state routing with diagram. b) Change the following IPv4 addresses from binary notation to dotted-Q2) a) decimal notation. i) 10000001 00001011 00001011 11101111 ii) 11000001 10000011 00011011 11111111 [4] Change the following IPv4 addresses from dotted-decimal notation to binary notation. [4] 111, 56, 45, 78 i) 221, 34, 7, 82 Write a short note on address blocks in classless addressing. [4] Explain Congestion Control in Virtual-Circuit Subnets. Q3) a) b) Write a short note on any ONE of the following. RSVP- The Resource reservation Protocol. Expedited Forwarding.

SECTION-II

Q4)	a)	List the states used in TCP connection management finite state machine.	7]
	b)	Write a short note on UDP header.	6]
Q5)	a)	Draw the diagram for the A portion of the Internet domain name space [e. 6]
	b)	Describe Terminal Network (Telnet) in detail.	6]
Q6)	a)	Explain the substitution cipher encryption algorithms.	6]
	b)	Write a short note on (any one) i) RSA	6]
		ii) MIME \ iii) Transposition Cipher.	
	(

SUN-SOOM

67/4.669/KJ

			SC - 178
Sea No.			Total No. of Pages : 2
		SE) (Semester - IV) (Revised) Examination,	November - 2019
0.1	, (C.	SOFTWARE ENGINEERING Sub. Code: 63535	W. 385
Dav	and I	Date : Wednesday, 20 - 11 - 2019	Total Marks: 50
		30 p.m. to 4.30 p.m.	
Instr	uction	ons: 1) All questions are compulsory. 2) Figures to the right indicate full marks.	
Q1)	a)	Define software engineering. State and briefly expending problems.	lain various software [5]
	b)	Explain iterative model in detail.	[5]
Q2)	a)	What is a formal technique? Explain syntactic doma & satisfaction relation of a specification language.	ain, semantic domain
	b)	Explain project staffing in detail.	[4]
Q3)	Writ	te short notes on (any two):	[6]
	a)	Waterfall model.	
	b)	Risk Management.	
	c)	Basic skills of project manager.	
	d)	Format of SRS document.	
Q4)	a)	State & explain any 2 methods of complexity metric design.	es for object oriented

Explain white box testing.

[5]

[4]

- What is objective of coding? Explain the concept of code walk through Q5) a) in code reviews. 31/23/
 - Explain the steps required to get ISO 9000 certificate. b)

[5]

Q6) Write short notes on (any two):

[6]

- Agile Project Management. a)
- b) PCMM.
- Coding standards & guidelines. c)
- d) Program Analysis Tools.

HHH

CALLOS (C)